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During the fabrication of quasi-phase-matched (QPM) devices, errors of periodic structure are usually inevitable.

The errors result in the deviation of the actual periodic domain length from the theoretical value. In this paper, we

numerically analyse the in
uence of errors on the quadrature squeezing performance of a degenerate optical parametric

ampli�er consisting of QPM devices. It is shown that errors signi�cantly degrade the squeezing degree of the quadrature

squeezed light. Due to the presence of the errors, the relative phase between the signal and the pump �eld for obtaining

the maximum squeezing depends on the propagation distance of light in the crystal and the pump power.
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1. Introduction

It is well known that squeezed light can be ob-

tained through second-harmonic generation (SHG)

and parametric down-conversion in �(2) media.[1;2] To

achieve eÆcient frequency conversions, optical crystals

have to be prepared to satisfy phase-matching condi-

tions. In traditional schemes, the birefringence of a

crystal is explored to accomplish the phase match-

ing. Recently, a new type of nonlinear crystal, called

a quasi-phase-matched (QPM) crystal, has attracted

extensive interest.[3] In a QPM crystal, the sign of

the nonlinear coeÆcient of each domain length in the

medium is reversed periodically. The great advan-

tage of QPM techniques is that the largest element

of �(2) tensor and a much longer e�ectively interact-

ing length can be utilized. Thus, a high eÆciency

in frequency conversion can be achieved, and corre-

spondingly squeezed light with a high squeezing degree

can be e�ectively generated by using QPM devices.

The squeezing has been observed in QPM waveguides

through parametric ampli�cation[4;5] and SHG.[6] Our

group in 2001 achieved the quadrature phase squeez-

ing light re
ected from a triply resonant optical para-

metric oscillator.[7] The theoretical results[8;9] show

that a high degree of squeezing can be obtained with

a perfectly phase-matched device.

In a practical QPM device, there are inevitable

deviations between the domain length and the de-

signed length due to the imperfect fabrication tech-

nology. Noirie et al
[10] and Maeda et al

[11] have

considered the e�ect of domain errors on amplitude

squeezing of SHG in a QPM device. They pointed

out that the domain errors can degrade the squeezing

degree. In this paper we numerically analyse the in
u-

ence of the errors in domain length on the quadrature

squeezing of the subharmonic light generated from a

degenerate optical parametric ampli�er.

2.Theoretical model

During the calculation the intensive pump �eld is

considered as a constant classical light �eld. Ignoring

optical losses, the equations of coupled waves in the

nonlinear interaction are written as[9]

da(z)

dz
= gexp[i(�kz + �pump � �signal � �idler)]b

+(z);
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db(z)

dz
= gexp[i(�kz + �pump � �signal � �idler)]a

+(z);

(1)

where a(z) and b(z) are the operators for signal and

idler �elds, and �pump, �signal and �idler are the phases

of pump, signal and idler �elds, respectively. �k =

kpump � kidler � ksignal is the wave vector mismatch.

g = (�1)Int(2z=�)
�
2!signal!idlerjd(2)j2Ipump

nsignalnidlernpump"0c3

�1=2
is the

nonlinear coupling coeÆcient. The superscript Int

indicates taking the integer part of 2z=�, � is the pe-

riod length of a QPM device, d(2) is the e�ective non-

linear coeÆcient, c is the speed of light in vacuum,

Ipump is the pump power, "0 is the dielectric constant

in vacuum, and nsignal, nidler and npump are the refrac-

tive indices for signal, idler and pump �elds, respec-

tively. For a degenerate frequency down-conversion

with identical signal and idler �elds, Eqs.(1) are sim-

pli�ed to

da(z)

dz
= gexp[i(�kz + �pump � 2�signal)]a

+z: (2)

According to the method proposed by Ben-

cheikh et al,[9] we introduce two variables

p(z) =
1

2

�
exp

�
� i

�
�k

2
z +

�

2

��
a(z)

+ exp

�
i

�
�k

2
z +

�

2

��
a+(z)

�
;

q(z) =
�i
2

�
exp

�
� i

�
�k

2
z +

�

2

��
a(z)

� exp

�
i

�
�k

2
z +

�

2

��
a+(z)

�
: (3)

Combining Eqs.(2) and (3), the equations of motion

of p(z) and q(z) are obtained:

dp(z)

dz
=gp(z) +

�k

2
q(z);

dq(z)

dz
=� gq(z)� �k

2
p(z): (4)

Taking K = [(�k=2)2 � g2]1=2 and assuming

(�k=2)2 > g2 (which is usually satis�ed in the practi-

cal system), we introduce the dimensionless variables

� = �k=2K; G = g=K;

C = cos(Kz); S = sin(Kz):

Equations (4) are simpli�ed to

�
p(z)

q(z)

�
=

�
C +GS �S

��S C �GS

��
p(0)

q(0)

�
: (5)

Two typical cases are analysed as follows.

2.1. Perfect QPM device

Assuming � = 2L, then we have � = 2L = �=K.

At the end of the �rst half-period (z = L), we have

C = cos(�=2), S = sin(�=2); and thus Eq.(5) becomes

�
p(L)

q(L)

�
=

�
G �

�� �G

��
p(0)

q(0)

�
: (6)

Because the sign of g and G is reversed for the

inverted domains of the QPM device, at the end of

the second half-period (z = 2L) we have

�
p(2L)

q(2L)

�
=

� �G �

�� G

��
G �

�� �G

��
p(0)

q(0)

�
:

(7)

After propagating through n periods, we obtain

�
p(2nL)

q(2nL)

�
=

� �(G2 +�2) �2�G
�2�G �(G2 +�2)

�n

�
p(0)

q(0)

�
: (8)

Equation (8) can be rewritten as

�
p(2nL)

q(2nL)

�
=

2
64

�n1 + �n2
2

�n1 � �n2
2

�n1 � �n2
2

�n1 + �n2
2

3
75
�
p(0)

q(0)

�
;

(9)

where �1 = �(G+�)2; �2 = �(�G+�)2.

Combining Eqs.(3) and (9), we obtain the anni-

hilation operator of the signal �eld:

a(z) =
exp[i(�kz=2 + �=2)]

2

�
a(0)exp(�i�=2)(�n1 + �n2 )+

ia+(0)exp(i�=2)(�n1 � �n2 )

�
: (10)

We assume the original signal wave (z=0) be in a

coherent state. The variances of the quadrature ampli-

tude and phase operators are calculated algebraically

X =a+ a+;

< (�X)2 >=1 +
(�n1 � �n2 )

2

2
+
�2n1 � �2n2

2

� cos

�
�kz + � +

�

2

�
; (11)

Y =� i(a� a+);

< (�Y )2 >=1 +
(�n1 � �n2 )

2

2
+
�2n1 � �2n2

2

� cos

�
�kz + � � �

2

�
; (12)
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For the particular case of z = 2mL = m�=K �
2m=�k, wherem is an integer, we obtain �kz = 2m�.

Equations (11) and (12) can be written as

< (�X)2 >=1 +
(�n1 � �n2 )

2

2
+
�2n1 � �2n2

2

� cos

�
� +

�

2

�
: (13)

< (�Y )2 >=1 +
(�n1 � �n2 )

2

2
+
�2n1 � �2n2

2

� cos

�
� � �

2

�
: (14)

2.2. QPM device with period error

The deviation of the domain length from the ideal

length can be categorized into two types.[11] (a) Uni-

form deviation in the whole length of the device. In

this case we have � = �0(1+�), where the introduced

parameter � (deviation parameter) denotes the degree

of deviation, i.e. when �=0, there is no deviation, and

a larger � corresponds to a larger deviation. �0 is the

perfect QPM period length, and � is the actual period

length. (b) Stochastic variations of the domain length

caused by non-ideal fabrication processes. Consider-

ing the stochastic variations of the period length, we

write

1

M

MX
n=1

�n = �0;
1

M

MX
n=1

�
�
+
n �

�0

2

�2

=
1

4
�2�2

0;

and

1

M

MX
n=1

�
�
�

n �
�0

2

�2

=
1

4
�2�2

0;

where �
+ and �

� are the lengths of the domain

with positive and negative nonlinear coeÆcients re-

spectively. M denotes the total period numbers in-

cluded in the QPM device.

We consider a practical system with � 6= 0, now

C = cos

�
�

2
(1+�)

�
and S = sin

�
�

2
(1+�)

�
instead of

the ideal case C=0 and S=1. Solving Eq.(5) numeri-

cally, we obtain

�
p(2nL)

q(2nL)

�
=

�
A B

C D

��
p(0)

q(0)

�
; (15)

where matrix

�
A B

C D

�
is the product of 2n matri-

ces

�
C +GS �S

��S C �GS

�
which describe the propa-

gation of the signal �eld.

Combining Eqs.(3) and (15), we have

a(z) =
exp[i(�kz=2 + �=2)]

2

�
�
a(0)exp(�i�=2)�+
ia+(0)exp(i�=2)�

�
: (16)

where � = (A+D)+i(C�B), � = (B+C)+i(D�A).
We assume that the original signal is in a coherent

state, and the variances of the quadrature amplitude

and phase operators are calculated algebraically

< (�X)2 >=
1

4
(��ei(�+�=2)

+ ����e�i(�+�=2) + j�j2 + j�j2); (17)

< (�Y )2 >=
1

4
(��ei(���=2)

+ ����e�i(���=2) + j�j2 + j�j2): (18)

3.Numerical analysis

As an example, we numerically calculate the

variance of quadrature amplitude of the signal

�eld generated from a degenerate parametric down-

conversion in an actual periodically poled LiNbO3

(PPLN). The corresponding parameters are as follows:

�pump=1.06�m, �signal=�idler=2.12�m, the nonlin-

ear coeÆcient d(2)=27pm/V (d33), the crystal length

Lppln=20mm, and the period length �=31�m.

3.1. The e�ect of uniform period deviation

Fig.1. The variance of quadrature amplitude versus

the deviation parameter � in the case of uniform pe-

riod deviation. SQL denotes the standard quantum

limit (Ipump=1.6MW/cm2, Lppln=20mm).

The variance of quadrature amplitude as a func-

tion of the deviation parameter � is plotted in Fig.1.

As � increases, the variance increases quickly at �rst,
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then the variance appears in periodic oscillations, and

the minimum variance is much higher than that for

�=0. This means that, when � 6= 0, the quadrature

squeezing decreases greatly. It should be pointed out

that uniform period deviation can be compensated by

tuning the temperature of QPM devices. This is be-

cause, for a QPM crystal, we have

�K = �k � 2�

�
; �k = 2�

�
1

�p
� 1

�s
� 1

�i

�
; (19)

where �K is the phase mismatch, and �k is the

wave vector mismatch. In an ideal case, �K=0, when

the period length has a uniform deviation, the phase-

matching condition is destroyed: �K = �k� 2�

�
6= 0.

Since �k is a function of temperature, so we can

change �k by tuning the temperature of the crystal

and making �K=0 again.

3.2. The random period deviations

For random period deviations, the length of ev-

ery period changes randomly. A practical QPM device

usually consists of thousands of periods; typically we

assume that the period lengths obey the normal dis-

tribution

P (�) =
1p
2��

exp

�
� (�� �0)

2

2�2

�
: (20)

Figure 2 shows the variance of quadrature amplitude

versus the propagation distance in a QPM device for

three di�erent deviation parameters (� = 0, � = 0:01,

� = 0:1). For a given � we plot several curves: four

curves for �=0.01 and �ve curves for �=0.1 (corre-

sponding to four di�erent crystals with deviation pa-

rameter �=0.01 and �ve di�erent crystals with devi-

ation parameter �=0.1). When the propagation dis-

tance increases, the variance decreases monotonically

for small � (�=0.01) and there is no distinct di�erence

between di�erent crystals. However, for larger � the

curves separate distinctly and there are 
uctuations in

each curve. From Fig.2 we see that the larger � has a

stronger in
uence on the squeezing performance. Fig-

ure 3 illustrates the relative phase between the pump

and the signal �elds, corresponding to the minimum

variance of quadrature amplitude versus the propaga-

tion distance. For perfect QPM devices (�=0), the

relative phase is a constant �=2 and does not change

with the propagation distance. For �=0.01 the rel-

ative phase presents weak 
uctuations around �=2.

But, for �=0.1, the relative phase oscillates randomly

between �� and �. Figure 4 shows the variance of

quadrature amplitude as a function of pump power

for three di�erent �. The four curves for �=0.01 and

�ve curves for �=0.1 correspond to the four di�erent

crystals with �=0.01 and �ve di�erent crystals with

�=0.1, respectively. As the pump power increases, the

variance decreases due to a stronger nonlinear inter-

action, however, the rising speed reduces for larger �.

Again, the curves for �=0.01 are very close but, for

�=0.1 the curves separate distinctly and the variance

decreases slowly without oscillation. In Fig.5 we plot

the relative phase between the pump and the signal

�elds corresponding to the minimum variance versus

the pump power; for �=0.1, it is a constant value of

�=2, for �=0.01 and �=0.1, little change is shown.

Fig.2. The variance as a function of propagation dis-

tance for di�erent � in the case of random period de-

viation (Ipump=1.6MW/cm2).

Fig.3. The relative phase between the pump and the

signal �elds for maximum squeezing as a function of

propagation distance for given � in the case of random

period deviation (Ipump=1.6MW/cm2).

The in
uence of � on the quadrature amplitude

squeezing is clearly seen in Fig.6. At a certain �

we plot three dots corresponding to three di�erent
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crystals with the same �. The maximum squeez-

ing of 10dB is obtained at �=0. The squeezing de-

creases as � increases and there are 
uctuations in the

curve. The reduction of squeezing is 1dB for � < 0:01,

and there are no more di�erences between the three

curves. When � reaches 0.1, the squeezing degrades

to 1dB and the three curves obviously separate. As

mentioned above, for di�erent QPM devices with the

same deviation parameter �=0.1 the squeezing perfor-

mances are di�erent.

Fig.4. The variance as a function of pump power

for di�erent � in the case of random period devia-

tion (Lppln=20mm).

Fig.5. The relative phase between the pump and the sig-

nal �elds for minimum variance versus pump power in the

case of random period deviation (Lppln=20mm).

Fig.6. The squeezing as a function of the deviation

parameter � in the case of random period deviation

(Ipump=1.6MW/cm2, Lppln=20mm).

4.Conclusion

In this paper we have studied numerically the in-


uences of the period deviation in QPM devices on

the quadrature squeezing light generated by a degen-

erate optical parametric ampli�er. It is shown that,

for uniform period errors, the quadrature squeezing

degrades quickly at �rst, then a periodic oscillation

around a higher noise level appears as the deviation �

increases. This kind of deviation can be compensated

by tuning the temperature of the QPM device. For the

random period errors, the dependence of the squeez-

ing upon the deviation parameter � and the di�er-

ent QPM devices with the same deviation parameter

are more complicated. Generally, the larger � has a

stronger in
uence on the squeezing performance. We

have also studied the dependence of the relative phase

between the signal and the pump �elds for obtaining

the maximum squeezing on the deviation parameter

�, the length of QPM crystal and the pump power.

We believe that the calculated results based on the

actual parameters of a PPLN can provide some valu-

able references for the design and application of the

QPM devices.
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